Bukti |cosh (z)|^2=sinh^2 (x) + cos^2 (y)

Posted by Fredi Batauga 22/02/2017 0 komentar
Bukti $|cosh (z)|^2=sinh^2 (x) + cos^2 (y)$ - Bukalah kembali buka Anda yang membahas fungsi trigonometri, fungsi hiperbolik, dan modulus pada pelajaran analisis kompleks. Kali ini hanya akan dibuktiktikan identitas di atas. Selebihnya Anda tinggal mempelajarinya mengapa langkah-langkah yang ada bisa terjadi. Itu adalah tugas Anda. Berikut ini akan ditunjukkan ruas kiri sama dengan ruas kanan.

Dari ruas kiri:

$ \begin{align} & |cosh (z)|^2 \\ & = (cosh (z))(cosh ( \overline{z})) \\ & = (cosh (x+iy))(cosh (x-iy)) \\ & = (cosh (x) cosh (iy) + sinh (x) sinh (iy)) \\ & (cosh (x) cosh (iy) - sinh (x) sinh (iy)) \\ & = (cosh (x) cos (y) + sinh (x) i sin (y)) \\ & (cosh (x) cos (y) - sinh (x) i sin (y)) \\ & = (cosh (x) cos (y))^2 - (sinh (x) i sin (y))^2 \\ & = (cosh (x) cos (y))^2 + (sinh (x) sin (y))^2 \\ & = cos^2 (y) (cosh^2 (x) - sinh^2 (x)) + sinh^2 (x) cos^2 (y1 \\ & + sinh^2 (x) (sin^2 (y) + cos^2 (y)) - sinh^2 (x) cos^2 (y) \\ & = cos^2 (y) . (1) + sinh^2 (x) . (1) \\ & = cos^2 (y) + sinh^2 (x) \end{align} $.

Diperoleh ruas kanan: $sinh^2 (x) + cos^2 (y)$

Jadi, terbukti bahwa $|cosh (z)|^2=sinh^2 (x) + cos^2 (y)$

Baca Selengkapnya

Menyelesaikan Limit Fungsi dengan Cara Substitusi

Posted by Fredi Batauga 17/02/2017 0 komentar
Menyelesaikan Limit Fungsi dengan Cara Substitusi - Cara substitusi maksudnya langsung mensubstitusikan/memasukan nilai $ x \, $ ke fungsi $ f(x) $ yakni:
$ \displaystyle \lim_{x \to a } f(x) = f(a) $ dengan syarat f(a) memiliki nilai. Apabila tidak memiliki nilai maka cara substitusi tidak dapat dilakukan.

Contoh Soal: Tentukan nilai limit dari bentuk berikut!
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } $

Penyelesaian:
a). $ \displaystyle \lim_{x \to 2 } 2x + 1 = 2(2) + 1 = 4 + 1 = 5 $
artinya nilai $ \displaystyle \lim_{x \to 2 } 2x + 1 = 5 $
b). $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = \frac{(-1)^2 + 2}{2(-1) - 1 } = \frac{1 + 2 }{-2-1} = \frac{3}{-3} = -1 $
artinya nilai $ \displaystyle \lim_{x \to -1 } \frac{x^2 + 2}{2x - 1 } = -1 $.

Adapaun apabila f(a) tidak memiliki nilai, caranya telah dijelaskan dalam tulisan lain.

Baca Selengkapnya

Definisi Limit Fungsi Secara Intuisi

Posted by Fredi Batauga 0 komentar
Definisi Limit Fungsi Secara Intuisi - Berikut diberikan definisi/pengertian dari limit fungsi secara intuisi (bukan secara formal).

Misalkan $ f $ sebuah fungsi $ f : R \rightarrow R \, $ dan misalkan $ L $ dan $ a $ bilangan real.
$ \displaystyle \lim_{x \to a } f(x) = L \, $ jika dan hanya jika $ f(x) $ mendekati $ L $ untuk semua $ x $ mendekati $ a $.

Cara Membaca notasi limit fungsi:
$ \displaystyle \lim_{x \to a } f(x) = L \, $ dibaca limit fungsi $ f(x) \, $ untuk $ x $ mendekati $ a $ sama dengan $ L $

Syarat suatu fungsi mempunyai limit di titik tertentu: Suatu limit dikatakan ada jika limit tersebut memiliki limit kiri dan limit kanan yang sama. Limit kiri adalah pendekatan nilai fungsi real dari sebelah kiri yang dinotasikan $ \displaystyle \lim_{x \to a^{-} } f(x) $ . Sedangkan limit kanan adalah pendekatan nilai fungsi real dari sebelah kanan yang dinotasikan $ \displaystyle \lim_{x \to a^{+} } f(x) $ .

Artinya, jika nilai $ \displaystyle \lim_{x \to a^{-} } f(x) = L \, $ dan $ \displaystyle \lim_{x \to a^{+} } f(x) = L \, $ , maka nilai $ \displaystyle \lim_{x \to a^{-} } f(x) = \displaystyle \lim_{x \to a } f(x) = \displaystyle \lim_{x \to a^{+} } f(x) = L \, $ atau $ \displaystyle \lim_{x \to a } f(x) = L $ .

Contoh: Apakah fungsi berikut ini mempunyai limit atau tidak?

$ f(x) = \left\{ \begin{array}{ccc} x^2 & \text{jika} & x \leq 1 \\ x+1 & \text{jika} & x > 1 \end{array} \right. $
untuk $ x \, $ mendekati 1?

Penyelesaian:
Keterangan fungsi: jika nilai $ x \leq 1 \, $ maka berlaku $ f(x) = x^2 $ dan jika nilai $ x > 1 \, $ maka berlaku $ f(x) = x + 1 $

Jadi, untuk x mendekati 1 dari arah kiri maka f(x) mendekati 1:
$ \displaystyle \lim_{x \to 1^{-} } f(x) = \lim_{x \to 1^{-} x^2 =1^2= 1$
dan untuk x mendekati 1 dari arah kanan maka f(x) mendekati 2:
$ \displaystyle \lim_{x \to 1^{+} } f(x) = \lim_{x \to 1^{+} x+1 =1+1=2 $

Karnena nilai limit kiri dan kananya tidak sama, maka fungsi $ f(x) = \left\{ \begin{array}{ccc} x^2 & \text{jika} & x \leq 1 \\ x+1 & \text{jika} & x > 1 \end{array} \right. \, $ untuk $ x \, $ mendekati 1 tidak mempunyai limit.

Baca Selengkapnya

Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi

Posted by Fredi Batauga 16/02/2017 0 komentar
Setelah mahir Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan Fungsi baik untuk fungsi aljabar maupun fungsi trigonometri. Sekarang pada tulisan ini, akan diberikan Rumus Dasar Turunan Fungsi yang akan digunakan untuk Menyelesaikan Soal-Soal Turunan Fungsi.

Berikut ini daftar rumus-rumus dasar turunan fungsi:

1). $ y = c \rightarrow y^\prime = 0 $ .
dimana $ c \, $ adalah konstanta. Jadi, setiap kostanta turunannya adalah nol.

2). $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
dimana $ n \, $ adalah bilangan real.

3). $ y = U \pm V \rightarrow y^\prime = U^\prime \pm V^\prime $

4). $ y = U.V \rightarrow y^\prime = U^\prime . V + U. V^\prime $

5). $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U. V^\prime}{V^2} $

dimana $ U \, $ dan $ V \, $ adalah dua buah fungsi yang berbeda.

6). $ y = [g(x)]^n \rightarrow y^\prime = n.[g(x)]^{n-1} . g^\prime (x) $

7). $ y = f[g(x)] \rightarrow y^\prime = f^\prime [g(x)] . g^\prime (x) $

Contoh-Contoh Soal:

1). Tentukan turunan fungsi aljabar berikut:
a). $ y = 3 $
b). $ y = x^5 $
c). $ y = \frac{5}{x^2} $
d). $ y = 3\sqrt{x} $
e). $ y = \frac{2}{3x\sqrt{x} } $
f). $ y = \frac{3}{2}\sqrt[5]{x^3} $

Penyelesaian :

a). Turunan konstanta adalah nol (rumus dasar 1).
$ y = 3 \rightarrow y^\prime = 0 $
b). Rumus dasar 2) dengan $ n = 5 $
$ y = x^5 \rightarrow y^\prime = n.x^{n-1} = 5.x^{5-1} = 5x^4 $
c). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{5}{x^2} = 5 x^{-2} \\ \rightarrow y^\prime = n . a . x^{n-1} \\ = (-2). 5. x^{(-2) - 1} \\ = -10x^{-3} = \\ \frac{-10}{x^3} $
d). Gunakan rumus dasar 2, dan sifat eksponen,
$ y = 3\sqrt{x} = 3x^\frac{1}{2} \\ \rightarrow y^\prime = n.a.x^{n-1} \\ = \frac{1}{2}. 3. x^{\frac{1}{2} - 1} \\ = \frac{3}{2} x^{-\frac{1}{2}} \\ = \frac{3}{2} \frac{1}{x^\frac{1}{2}} \\ = \frac{3}{2\sqrt{x}} $
e). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{2}{3x\sqrt{x} } = \frac{2}{3x^1. x^\frac{1}{2} } = \frac{2}{3x^\frac{3}{2} } = \frac{2}{3} x^{-\frac{3}{2}} $
$ y^\prime = n.a.x^{n-1} = -\frac{3}{2} . \frac{2}{3} . x^{-\frac{3}{2} - 1 } = - x^{-\frac{5}{2}} = \frac{-1}{x^\frac{5}{2}} = \frac{-1}{x^2.x^\frac{1}{2}} = \frac{-1}{x^2\sqrt{x}} $
f). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{3}{2}\sqrt[5]{x^3} = \frac{3}{2}x^\frac{3}{5} \rightarrow y^\prime = n.a.x^{n-1} = \frac{3}{5}. \frac{3}{2}.x^{\frac{3}{5} - 1} = \frac{9}{10} x^{-\frac{2}{5}} = \frac{9}{10} \frac{1}{ x^{\frac{2}{5}} } = \frac{9}{10 \sqrt[5]{x^2}} $

2). Tentukan turunan ($ f^\prime (x) $) dari setiap fungsi berikut.
a). $ f(x) = 3x^2 - 2x $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 $

Penyelesaian :
Untuk menentukan turunan fungsi-fungsinya, kita gunakan rumus dasar 3. Rumus dasar 3 itu maksudnya setiap suku masing-masing diturunkan.
a). $ f(x) = 3x^2 - 2x $
Misalkan :
$ U = 3x^2 \rightarrow U^\prime = 2.3.x^{2-1} = 6x $
$ V = 2x= 2x = 2x^1 \rightarrow V^\prime = 1.2.x^{1-1} = 2 . x^0 = 2.1 = 2 $
Untuk fungsi yang variabelnya pangkat satu : $ y = ax \rightarrow y^\prime = a $
Turunan fungsinya adalah :
$ f(x) = U- V \rightarrow f^\prime (x) = U^\prime - V^\prime = 6x - 2 $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 = 2x^\frac{1}{2} + 5x^3 - 7 $
$ f^\prime (x) = \frac{1}{2} . 2 . x^{\frac{1}{2} - 1 } + 3.5.x^{3-1} - 0 = x^{-\frac{1}{2}} + 15x^2 = \frac{1}{\sqrt{x} } + 15x^2 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 \rightarrow f^\prime (x) = 5.x^{5-1} + 3.2.x{3-1} - 3 + 0 = 5x^4 + 6x^2 - 3 $

3). Tentukan turunan fungsi aljabar dari fungsi $ y = (x^2-1)(2x^3 + x) $

Penyelesaian :
Kita gunakan rumus dasar 4. Sebenarnya setiap fungsi bisa dikalikan terlebih dahulu kemudian diturunkan menggunakan rumus dasar 3 dan 2.
a). $ y = (x^2-1)(2x^3 + x) $
Misalkan :
$ U = (x^2-1) \rightarrow U^\prime = 2x - 0 = 2x $
$ V = (2x^3 + x) \rightarrow V^\prime = 6x^2 + 1 $
Sehingga turunannya :
$ \begin{align} y & = UV \\ y^\prime & = U^\prime . V + U. V^\prime \\ & = 2x. (2x^3 + x) + (x^2-1).( 6x^2 + 1) \\ & = 4x^4 + 2x^2 + ( 6x^4 + x^2 - 6x^2 - 1 ) \\ & = 10x^4 - 3x^2 - 1 \end{align} $
Jadi, turunannya adalah $ y^\prime = 10x^4 - 3x^2 - 1 $

4). Tentukan turunan fungsi $ y = \frac{x^2 + 2}{3x - 5} $ ?

Penyelesaian :
Kita gunakan rumus dasar 5).

Misalkan :
$ U = x^2 + 2 \rightarrow U^\prime = 2x + 0 = 2x $
$ V = 3x - 5 \rightarrow V^\prime = 3 - 0 = 3 $
Sehingga turunannya :
$ \begin{align} y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{2x . (3x - 5) - (x^2 + 2). 3}{(3x - 5)^2} \\ & = \frac{6x^2 - 10x - 3x^2 - 6}{9x^2 -30x + 25} \\ & = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} \end{align} $
Jadi, turunannya adalah $ y^\prime = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} $


Baca Selengkapnya

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan

Posted by Fredi Batauga 0 komentar
Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan - Matematika Ku Bisa - Turunan fungsi $f(x)\,$ di $x=a\,$ dinotasikan dengan $f^\prime (a) \, $ , didefinisikan sebagai:

$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.

atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:

$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $

Notasi Turunan

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.

Definisi atau pengertian Turunan Fungsi Secara Umum

Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:

$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".

Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $

Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)

a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $

b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $

c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $

¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.

¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $

¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $

Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $

Baca Selengkapnya
Copyright of Matematika Ku Bisa. HALAMAN UTAMA

Google+ Badge

Pesan Buku Matematika

Admin Matematika Ku Bisa