Menjelaskan tentang suatu Fakta, Konsep, Prinsip, Prosedural dan Pemodelan dalam Matematika.

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan

Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan - Matematika Ku Bisa - Turunan fungsi $f(x)\,$ di $x=a\,$ dinotasikan dengan $f^\prime (a) \, $ , didefinisikan sebagai:

$ f^\prime (a) = \displaystyle \lim_{ \Delta x \to 0 } \frac{f(a+\Delta x ) - f(a)}{\Delta x} \, \, $ jika limitnya ada.

atau bisa ditulis : $ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (a) \, $ dibaca " $ f \, $ aksen $ \, a $ ". Jika kita tuliskan $ x = a + h \, $ , maka $ h = x - a \, $ dan untuk $ h \to 0 \, $ maka $ x \to a $ . Sehingga definisi limit di atas bisa juga ditulis:

$ f^\prime (a) = \displaystyle \lim_{ h \to 0 } \frac{f(a+ h ) - f(a)}{h} = \displaystyle \lim_{ x \to a } \frac{f( x ) - f(a)}{x-a} $

Notasi Turunan

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ f^\prime (x) \, $ atau $ y^\prime $
Turunan kedua dari $ y = f(x) \, $ di notasikan : $ f^{\prime \prime} (x) \, $ atau $ y^{\prime \prime} $
dan seterusnya.

Turunan pertama dari $ y = f(x) \, $ di notasikan: $ \frac{df(x)}{dx} \, $ atau $ \frac{dy}{dx} $
Turunan kedua dari $ y = f(x) \, $ di notasikan: $ \frac{d^2f(x)}{(dx)^2} \, $ atau $ \frac{d^2y}{(dx)^2} $
dan seterusnya.

Definisi atau pengertian Turunan Fungsi Secara Umum

Turunan fungsi $ f(x) \, $ untuk semua $ x \, $ dinotasikan dengan $ f^\prime (x) \, $ , didefinisikan sebagai:

$ f^\prime (x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \, \, $ jika limitnya ada.

Bentuk $ f^\prime (x) \, $ dibaca " $ f \, $ aksen $ \, x $ ".

Contoh Soal:
Tentukan turunan dari $ f(x) \, $ atau $ f^\prime (x) \, $ dari masing-masing fungsi berikut:
a). $ f(x) = 5x - 2 $
b). $ f(x) = x^2 + 2x $
c). $ f(x) = \sin x $

Penyelesaian: (Bentuk $ f^\prime (x) \, $ artinya turunan dari fungsi $ f(x) $)

a). $ f(x) = 5x - 2 $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5(x+ h) - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{(5x + 5h - 2) - (5x-2)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{5h}{h} \\ & = \displaystyle \lim_{ h \to 0 } 5 \\ & = 5 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 5 $

b). $ f(x) = x^2 + 2x $
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{ h \to 0 } \frac{f(x+ h ) - f(x)}{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [(x+ h)^2 +2(x+ h)] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ [x^2 + 2xh + h^2 + 2x + 2h] - (x^2 + 2x) }{h} \\ & = \displaystyle \lim_{ h \to 0 } \frac{ h^2 + 2xh + 2h }{h} \\ & = \displaystyle \lim_{ h \to 0 } h + 2x + 2 \\ & = 0 + 2x + 2 \\ & = 2x + 2 \end{align} $
Jadi, turunannya : $ f^\prime (x) = 2x + 2 $

c). $ f(x) = \sin x $
¤ Ingat bentuk:
$ \sin (A+B) = \sin A \cos B + \cos A \sin B $.
Sehingga:
$ \begin{align} f(x+h) & = \sin (x + h) \\ & = \sin x \cos h + \cos x \sin h \end{align} $

¤ Rumus:
$ \cos x = 1 - 2\sin ^2 \frac{1}{2} x $
Sehingga :
$ \cos h = 1 - 2\sin ^2 \frac{1}{2} h $.

¤Bentuk :
$ \begin{align} \cos h - 1 & = (1 - 2\sin ^2 \frac{1}{2} h) - 1 \\ & = - 2\sin ^2 \frac{1}{2} h \\ & = - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h \end{align} $

¤ Menentukan penyelesaiannya:
$ \begin{align} f^\prime (x) & = \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h + \cos x \sin h) - \sin x }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ (\sin x \cos h - \sin x ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) + \cos x \sin h }{h} \\ & = \displaystyle \lim_{h \to 0 } \frac{ \sin x ( \cos h - 1 ) }{h} \\ & + \displaystyle \lim_{h \to 0 } \frac{ \cos x \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ ( \cos h - 1 ) }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ - 2\sin \frac{1}{2} h . \sin \frac{1}{2} h }{h} \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \displaystyle \lim_{h \to 0 } \frac{ \sin \frac{1}{2} h }{h} . (- 2\sin \frac{1}{2} h ) \\ & + \cos x . \displaystyle \lim_{h \to 0 } \frac{ \sin h }{h} \\ & = \sin x . \frac{1}{2}. (- 2\sin \frac{1}{2} 0 ) \\ & + \cos x . 1 \\ & = \sin x . \frac{1}{2}. (- 2\sin 0 ) + \cos x \\ & = \sin x . \frac{1}{2}. (0 ) + \cos x \\ & = 0 + \cos x \\ & = \cos x \end{align} $

Jadi, turunannya : $ f^\prime (x) = \cos x \, $ untuk $ f(x) = \sin x $

Demikianlah cara Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan. Semoga tulisan sederhana ini bermanfaat bagi pembaca sekalian.
PESAN SPONSOR
Ingin jadi agen pulsa all operator dimana Anda juga bisa melayani pembayaran listrik baik prabayar maupun pascabayar? Klik link referal Admin di bawah untuk menuju ke form pendaftarannya, GRATS!
KLIK DAFTAR

Insya Allah, aman, mudah, dan terpercaya karena Admin sudah mencoba menjadi agen.
Toko Buku Online Belbuk.com

No comments:

Post a Comment

Berkomentarlah dengan santun, Trimakasih!

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design