Belajar Matematika Online

Sedang Dipromosikan: Buku Metode Berhitung Alif: Melatih Kekuatan Otak pada Anak SMS/WA 082197531242 !

PERHATIAN: Mohon maaf, jika ada tampilan iklan atau iklan yang tidak syar'i, jangan diteruskan! Kami akan melakukan upaya pemblokiran, terima kasih!

Teorema-Teorema Grup



ADVERTISEMENT
Setelah memahami Definisi Grup dan Cara Membuktikan Suatu Himpunan Beserta Operasinya adalah Grup atau tidak, sekarang marilah perhatikan teorema-teorema berikut.

Teorema 1
Jika (G,*) adalah suatu Grup maka berlaku :

i) $(a^{-1})^{-1}=a$ untuk setiap $a \in G$

ii) $(a*b)^{-1}=b^{-1}*a^{-1}$ untuk setiap $a, b \in G$

Sebelum kita buktikan, pahami dululah maksudnya. Contoh Misal kita punya himpunan bilangan bulat (Z) anggotanya { . . . , -3, -2, -1, 0 , 1, 2, 3, . . .} telah dibuktikan pada tulisan sebelumnya bilangan bulat dengan operasi penjumlahan biasa (+) membentuk grup kita tulis aja (Z,+) . Sekarang karena (Z,+) grup maka berdasarkan Teorema 1 pasti sebarang anggota a di Z berlaku $(a^{-1})^{-1}=a$. Contoh a=3 invers penjumlahan dari a=3 adalah $a^{-1}=-3$ sekarang kita lihat bahwa $(a^{-1})^{-1}=3$ karena invers penjumlahan dari -3 adalah 3.

Untuk yang bagian ii) kita coba misal a=3 dan b=4 maka $(a+b)^{-1}=-b+(-a)=-4+(-3)=-7$. Ternyata benar ya invers penjumlahan dari (3+4) adalah -7.

Catatan: $a^{-1}=-a$ karena operasi yang kita gunakan adalah operasi + biasa. Kalau operasi yang kita gunakan adalah perkalian biasa (x) maka $a^{-1}=1/a$. Kalau belum faham, fahami definisi grup dulu hehe.

Bukti Teorema 1

i) Karena (G, *) Grup maka perhatikan: $(a^{-1})^{-1}*a^{-1}=e$ dan pada sisi lainnya $a*a^{-1}=e$, dari sini kita simpulkan $(a^{-1})^{-1}=a$.

ii Karena (G,*) grup maka:
1) $(a*b)^{-1}*(a*b)=e$ dan
2) $(b^{-1}*a^{-1})*(a*b)=b^{-1}*(a^{-1}*a)*b$

$=b^{-1}*e*b=(b^{-1}*e)*b=b^{-1}*b=e$. 
Jadi berdasarkan 1) dan 2) $(a*b)^{-1}=b^{-1}*a^{-1}$

Pada tulisan selanjutkan akan kita bahas hukum pencoretan kiri/kanan dan ketunggalan solusi. Ditungguh ya hehe

ADVERTISEMENT
ADVERTISEMENT
Perhatian: Tertarik untuk memasang iklan disini? SMS/WA 082197531242!
MY IKLAN: Isi formulir di PESAN BUKU MKB untuk mendapatkan versi cetaknya

Beli Buku
Buku Metode Berhitung Alif

atau lihat dan dapatkan ebooknya di Google Play Book

No comments:

Post a Comment

Komentar yang menampilkan gambar berupa foto makhluk bernyawa atau emotion, akan kami hapus!

Jadi Agen Portal Pulsa Murah

Layanan

1. Bimbel Online Audio-Matematika

2. Kerja Soal Matematika

3. Buat Blog dan Register Domain Gratis

4. Beriklan di Blog Kami

5. Google Adsense

6. Desain Template

7. Jual Ebook di Google Play Store

Kontak Kami

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design