Belajar Matematika Online

Sedang Dipromosikan: Buku Metode Berhitung Alif: Melatih Kekuatan Otak pada Anak SMS/WA 082197531242 !

PERHATIAN: Mohon maaf, jika ada tampilan iklan atau iklan yang tidak syar'i, jangan diteruskan! Kami akan melakukan upaya pemblokiran, terima kasih!

Bukti Identitas |cosh (z)|^2=sinh^2 (x) + cos^2 (y)



ADVERTISEMENT
Bukti identitas $|cosh (z)|^2=sinh^2 (x) + cos^2 (y)$, ini dipertanyakan oleh salah satu teman saya yang kebetulan sedang mengambil mata kuliah Analisis Kompleks pada program studi pendidikan matematika, Universitas Lakidende, Unaaha. Agar dapat bermanfaat bagi pembaca blog ini, saya menulis buktinya di sini. Sebelumnya terima kasih telah berkunjung!

Tulisan ini diperuntuhkan bagi mahasiswa yang sedang mencari cara memuktikan identitas tersebut. Entah itu tugas dari dosen atau kebutuhan mahasiswa sendiri. Sehingga, bagi Anda yang sedang atau telah mengambil mata kuliah Analisis Kompleks, bukalah kembali buka Anda yang membahas tentang fungsi trigonometri, fungsi hiperbolik, dan modulus pada pelajaran analisis kompleks karena kali ini hanya akan dibuktiktikan identitas di atas saja, tidak membahas materi-materi yang disebutkan sebelumnya. Pada bukti di bawah ini, saya hanya memberikan ide cara membuktikannya, selebihnya Anda tinggal mempelajarinya mengapa langkah-langkah yang ada bisa terjadi. Itu adalah tugas Anda. 

Untuk membuktikan kesamaan di atas, dapat dilakukan dengan cara merubah salah satu ruas (ruas kiri atau ruas kanan) sehingga sama dengan ruas lainnya menggunakan kesamaan-kesamaan yang telah diketahui atau dibuktikan sebelumnya. 

Perhatikan kesamaannya, dari ruas kiri yaitu $|cosh (z)|^2$ akan ditujukkan $|cosh (z)|^2=sinh^2 (x) + cos^2 (y)$ sebagai berikut.

$ \begin{align} & |cosh (z)|^2 & = (cosh (z))(cosh ( \overline{z})) \\ & = (cosh (x+iy))(cosh (x-iy)) \\ & = (cosh (x) cosh (iy) + sinh (x) sinh (iy)) \\ & (cosh (x) cosh (iy) - sinh (x) sinh (iy)) \\ & = (cosh (x) cos (y) + sinh (x) i sin (y)) \\ & (cosh (x) cos (y) - sinh (x) i sin (y)) \\ & = (cosh (x) cos (y))^2 - (sinh (x) i sin (y))^2 \\ & = (cosh (x) cos (y))^2 + (sinh (x) sin (y))^2 \\ & = cos^2 (y) (cosh^2 (x) - sinh^2 (x)) + sinh^2 (x) cos^2 (y1 \\ & + sinh^2 (x) (sin^2 (y) + cos^2 (y)) - sinh^2 (x) cos^2 (y) \\ & = cos^2 (y) . (1) + sinh^2 (x) . (1) \\ & = cos^2 (y) + sinh^2 (x) \end{align} $.

Kita peroleh ruas kanannya yaitu $sinh^2 (x) + cos^2 (y)$. Karena ruas kiri samadengan ruas kanan maka kita telah membuktikan bahwa $|cosh (z)|^2=sinh^2 (x) + cos^2 (y)$. Demikian bukti singkat ini, semoga dapat bermanfaat bagi pembaca. 

ADVERTISEMENT
ADVERTISEMENT
Perhatian: Tertarik untuk memasang iklan disini? SMS/WA 082197531242!
MY IKLAN: Isi formulir di PESAN BUKU MKB untuk mendapatkan versi cetaknya

Beli Buku
Buku Metode Berhitung Alif

atau lihat dan dapatkan ebooknya di Google Play Book

No comments:

Post a Comment

Komentar yang menampilkan gambar berupa foto makhluk bernyawa atau emotion, akan kami hapus!

Jadi Agen Portal Pulsa Murah

Layanan

1. Bimbel Online Audio-Matematika

2. Kerja Soal Matematika

3. Buat Blog dan Register Domain Gratis

4. Beriklan di Blog Kami

5. Google Adsense

6. Desain Template

7. Jual Ebook di Google Play Store

Kontak Kami

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design