Belajar Matematika Online

Sedang Dipromosikan: Buku Metode Berhitung Alif: Melatih Kekuatan Otak pada Anak SMS/WA 082197531242 !

PERHATIAN: Mohon maaf, jika ada tampilan iklan atau iklan yang tidak syar'i, jangan diteruskan! Kami akan melakukan upaya pemblokiran, terima kasih!

Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi



ADVERTISEMENT
Setelah mahir Menyelesaikan Turunan Suatu Fungsi Menggunakan Definisi Turunan Fungsi baik untuk fungsi aljabar maupun fungsi trigonometri. Sekarang pada tulisan ini, akan diberikan Rumus Dasar Turunan Fungsi yang akan digunakan untuk Menyelesaikan Soal-Soal Turunan Fungsi.

Berikut ini daftar rumus-rumus dasar turunan fungsi:

1). $ y = c \rightarrow y^\prime = 0 $ .
dimana $ c \, $ adalah konstanta. Jadi, setiap kostanta turunannya adalah nol.

2). $ y = ax^n \rightarrow y^\prime = n.a.x^{n-1} $
dimana $ n \, $ adalah bilangan real.

3). $ y = U \pm V \rightarrow y^\prime = U^\prime \pm V^\prime $

4). $ y = U.V \rightarrow y^\prime = U^\prime . V + U. V^\prime $

5). $ y = \frac{U}{V} \rightarrow y^\prime = \frac{U^\prime . V - U. V^\prime}{V^2} $

dimana $ U \, $ dan $ V \, $ adalah dua buah fungsi yang berbeda.

6). $ y = [g(x)]^n \rightarrow y^\prime = n.[g(x)]^{n-1} . g^\prime (x) $

7). $ y = f[g(x)] \rightarrow y^\prime = f^\prime [g(x)] . g^\prime (x) $

Contoh-contoh soalnya sebagai berikut.

1). Tentukan turunan fungsi aljabar berikut:
a). $ y = 3 $
b). $ y = x^5 $
c). $ y = \frac{5}{x^2} $
d). $ y = 3\sqrt{x} $
e). $ y = \frac{2}{3x\sqrt{x} } $
f). $ y = \frac{3}{2}\sqrt[5]{x^3} $

Penyelesaian :

a). Turunan konstanta adalah nol (rumus dasar 1).
$ y = 3 \rightarrow y^\prime = 0 $
b). Rumus dasar 2) dengan $ n = 5 $
$ y = x^5 \rightarrow y^\prime = n.x^{n-1} = 5.x^{5-1} = 5x^4 $
c). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{5}{x^2} = 5 x^{-2} \\ \rightarrow y^\prime = n . a . x^{n-1} \\ = (-2). 5. x^{(-2) - 1} \\ = -10x^{-3} = \\ \frac{-10}{x^3} $
d). Gunakan rumus dasar 2, dan sifat eksponen,
$ y = 3\sqrt{x} = 3x^\frac{1}{2} \\ \rightarrow y^\prime = n.a.x^{n-1} \\ = \frac{1}{2}. 3. x^{\frac{1}{2} - 1} \\ = \frac{3}{2} x^{-\frac{1}{2}} \\ = \frac{3}{2} \frac{1}{x^\frac{1}{2}} \\ = \frac{3}{2\sqrt{x}} $
e). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{2}{3x\sqrt{x} } = \frac{2}{3x^1. x^\frac{1}{2} } = \frac{2}{3x^\frac{3}{2} } = \frac{2}{3} x^{-\frac{3}{2}} $
$ y^\prime = n.a.x^{n-1} = -\frac{3}{2} . \frac{2}{3} . x^{-\frac{3}{2} - 1 } = - x^{-\frac{5}{2}} = \frac{-1}{x^\frac{5}{2}} = \frac{-1}{x^2.x^\frac{1}{2}} = \frac{-1}{x^2\sqrt{x}} $
f). Rumus dasar 2, dan gunakan sifat eksponen,
$ y = \frac{3}{2}\sqrt[5]{x^3} = \frac{3}{2}x^\frac{3}{5} \rightarrow y^\prime = n.a.x^{n-1} = \frac{3}{5}. \frac{3}{2}.x^{\frac{3}{5} - 1} = \frac{9}{10} x^{-\frac{2}{5}} = \frac{9}{10} \frac{1}{ x^{\frac{2}{5}} } = \frac{9}{10 \sqrt[5]{x^2}} $

2). Tentukan turunan ($ f^\prime (x) $) dari setiap fungsi berikut.
a). $ f(x) = 3x^2 - 2x $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 $

Penyelesaian :

Untuk menentukan turunan fungsi-fungsinya, kita gunakan rumus dasar 3. Rumus dasar 3 itu maksudnya setiap suku masing-masing diturunkan.
a). $ f(x) = 3x^2 - 2x $
Misalkan :
$ U = 3x^2 \rightarrow U^\prime = 2.3.x^{2-1} = 6x $
$ V = 2x= 2x = 2x^1 \rightarrow V^\prime = 1.2.x^{1-1} = 2 . x^0 = 2.1 = 2 $
Untuk fungsi yang variabelnya pangkat satu : $ y = ax \rightarrow y^\prime = a $
Turunan fungsinya adalah :
$ f(x) = U- V \rightarrow f^\prime (x) = U^\prime - V^\prime = 6x - 2 $
b). $ f(x) = 2\sqrt{x} + 5x^3 - 7 = 2x^\frac{1}{2} + 5x^3 - 7 $
$ f^\prime (x) = \frac{1}{2} . 2 . x^{\frac{1}{2} - 1 } + 3.5.x^{3-1} - 0 = x^{-\frac{1}{2}} + 15x^2 = \frac{1}{\sqrt{x} } + 15x^2 $
c). $ f(x) = x^5 + 2x^3 - 3x + 1 \rightarrow f^\prime (x) = 5.x^{5-1} + 3.2.x{3-1} - 3 + 0 = 5x^4 + 6x^2 - 3 $

3). Tentukan turunan fungsi aljabar dari fungsi $ y = (x^2-1)(2x^3 + x) $

Penyelesaian :

Kita gunakan rumus dasar 4. Sebenarnya setiap fungsi bisa dikalikan terlebih dahulu kemudian diturunkan menggunakan rumus dasar 3 dan 2.
a). $ y = (x^2-1)(2x^3 + x) $
Misalkan :
$ U = (x^2-1) \rightarrow U^\prime = 2x - 0 = 2x $
$ V = (2x^3 + x) \rightarrow V^\prime = 6x^2 + 1 $
Sehingga turunannya :
$ \begin{align} y & = UV \\ y^\prime & = U^\prime . V + U. V^\prime \\ & = 2x. (2x^3 + x) + (x^2-1).( 6x^2 + 1) \\ & = 4x^4 + 2x^2 + ( 6x^4 + x^2 - 6x^2 - 1 ) \\ & = 10x^4 - 3x^2 - 1 \end{align} $
Jadi, turunannya adalah $ y^\prime = 10x^4 - 3x^2 - 1 $

4). Tentukan turunan fungsi $ y = \frac{x^2 + 2}{3x - 5} $ ?

Penyelesaian :
Kita gunakan rumus dasar 5).

Misalkan :
$ U = x^2 + 2 \rightarrow U^\prime = 2x + 0 = 2x $
$ V = 3x - 5 \rightarrow V^\prime = 3 - 0 = 3 $
Sehingga turunannya :
$ \begin{align} y & = \frac{U}{V} \\ y^\prime & = \frac{U^\prime . V - U. V^\prime}{V^2} \\ & = \frac{2x . (3x - 5) - (x^2 + 2). 3}{(3x - 5)^2} \\ & = \frac{6x^2 - 10x - 3x^2 - 6}{9x^2 -30x + 25} \\ & = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} \end{align} $
Jadi, turunannya adalah $ y^\prime = \frac{3x^2 - 10x - 6}{9x^2 -30x + 25} $

Demikianlah Rumus Dasar Menyelesaikan Soal-Soal Turunan Fungsi, semoga tulisan sederhana ini bermanfaat bagi yang sedang membutuhkannya.

ADVERTISEMENT
ADVERTISEMENT
Perhatian: Tertarik untuk memasang iklan disini? SMS/WA 082197531242!
MY IKLAN: Isi formulir di PESAN BUKU MKB untuk mendapatkan versi cetaknya

Beli Buku
Buku Metode Berhitung Alif

atau lihat dan dapatkan ebooknya di Google Play Book

No comments:

Post a Comment

Komentar yang menampilkan gambar berupa foto makhluk bernyawa atau emotion, akan kami hapus!

Jadi Agen Portal Pulsa Murah

Layanan

1. Bimbel Online Audio-Matematika

2. Kerja Soal Matematika

3. Buat Blog dan Register Domain Gratis

4. Beriklan di Blog Kami

5. Google Adsense

6. Desain Template

7. Jual Ebook di Google Play Store

Kontak Kami

Name

Email *

Message *

Copyright © Matematika Ku Bisa. All rights reserved. Template by CB. Theme Framework: Responsive Design